
LECTURE 29

PROCESS MANAGEMENT IN MACH

Distributed Operating System

History of Mach

 Mach’s earliest roots go back to a system called
RIG (Rochester Intelligent Gateway), which began
at the University of Rochester in 1975. Its main
research goal was to demonstrate that operating
systems could be structured in a modular way.

 When one of its designers, Richard Rashid, left the
University of Rochester and moved to Carnegie-
Mellon University in 1979, he wanted to continue
developing message-passing operating systems
but on more modern hardware. The machine
selected was the PERQ. The new operating
system for the PERQ was called Accent. It is an
improvement of RIG.

Distributed Operating System

 By 1984 Accent was being used on 150 PERQs but

it was clearly losing out to UNIX. This observation

led Rashid to begin a third-generation operating

systems project called Mach. Mach is compatible

with UNIX, contains threads, multiprocessor

support, and a virtual memory system.

Distributed Operating System

 The first version of Mach was released in 1986 for

the VAX 11/784, a four-CPU multiprocessor.

Shortly thereafter, ports to the IBM PC/RT and Sun

3 were done. By 1987, Mach was also running on

the Encore and Sequent multiprocessors. As of

1988, the Mach 2.5 kernel was large and

monolithic, due to the presence of a large amount

of Berkeley UNIX code in the kernel. In 1988, CMU

removed all the Berkeley code from the kernel and

put it in user space. What remained was a

microkernel consisting of pure Mach. Mach is still

under development.

Distributed Operating System

Goals of Mach

1. Providing a base for building other
operating systems (e.g., UNIX).

2. Supporting large sparse address spaces.

3. Allowing transparent access to network
resources.

4. Exploiting parallelism in both the system
and the applications.

5. Making Mach portable to a larger
collection of machines.

Distributed Operating System

The Mach Microkernel

4.3 BSD

emulator

System V

emulator HP/UX

emulator Other

emulator

Microkernel

User process

User space

Kernel space

Software

emulator

layer

Distributed Operating System

The kernel manages five

principal abstractions:
1. Processes.

2. Threads.

3. Memory objects.

4. Ports.

5. Messages.

Distributed Operating System

Process Management in

Mach

Process

port

Bootstrap

port

Exception

port

Registered

ports
kernel

process

Thread

Address space

Distributed Operating System

Ports

 The process port is used to communicate
with the kernel.

 The bootstrap port is used for initialization
when a process starts up.

 The exception port is used to report
exceptions caused by the process. Typical
exceptions are division by zero and illegal
instruction executed.

 The registered ports are normally used to
provide a way for the process to
communicate with standard system servers.

Distributed Operating System

 A process can be runnable or blocked.

 If a process is runnable, those threads

that are also runnable can be

scheduled and run.

 If a process is blocked, its threads

may not run, no matter what state they

are in.

Distributed Operating System

Process Management

Primitives

Create Create a new process, inheriting certain properties

Terminate Kill a specified process

Suspend Increment suspend counter

Resume Decrement suspend counter. If it is 0, unblock the process

Priority Set the priority for current or future threads

Assign Tell which processor new threads should run on

Info Return information about execution time, memory usage, etc.

Threads Return a list of the process’ threads

Distributed Operating System

Threads

 Mach threads are managed by the kernel. Thread creation and

destruction are done by the kernel.

Fork Create a new thread running the same code as the

parent thread

Exit Terminate the calling thread

Join Suspend the caller until a specified thread exits

Detach Announce that the thread will never be jointed (waited

for)

Yield Give up the CPU voluntarily

Self Return the calling thread’s identity to it
Distributed Operating System

Implementation of C Threads

in Mach

All C threads use one kernel thread. Each C thread has its own kernel thread.

Each C thread has its own single-threaded process. Arbitrary mapping of user threads to kernel threads. Distributed Operating System

Scheduling algorithm

 When a thread blocks, exits, or uses up its

quantum, the CPU it is running on first looks

on its local run queue to see if there are any

active threads.

 If it is nonzero, run the highest-priority

thread, starting at the queue specified by

the hint.

 If the local run queue is empty, the same

algorithm is applied to the global run queue.

The global queue must be locked first.

Distributed Operating System

Scheduling

Global run queue for processor set 1 Global run queue for processor set 2
Priority

(high) 0

Low 31

0

31
 :Free

Count: 6

Hint: 2

 :Busy

Count: 7

Hint: 4 Distributed Operating System

Memory Management in

Mach
 Mach has a powerful, elaborate, and highly flexible

memory management system based on paging.

 The code of Mach’s memory management is split
into three parts. The first part is the pmap module,
which runs in the kernel and is concerned with
managing the MMU.

 The second part, the machine-independent kernel
code, is concerned with processing page faults,
managing address maps, and replacing pages.

 The third part of the memory management code
runs as a user process called a memory manager.
It handles the logical part of the memory
management system, primarily management of the

backing store (disk).
Distributed Operating System

Virtual Memory

 The conceptual model of memory that Mach

user processes see is a large, linear virtual

address space. The address space is

supported by paging.

 A key concept relating to the use of virtual

address space is the memory object. A

memory object can be a page or a set of

pages, but it can also be a file or other,

more specialized data structure.

Distributed Operating System

An address space with

allocated regions, mapped

objects, and unused

addresses

File xyz region

Stack region

Data region

Text region

Unused

Unused

Unused

Distributed Operating System

System calls for virtual

address space manipulation

Allocate Make a region of virtual address space usable

Deallocate Invalidate a region of virtual address space

Map Map a memory object into the virtual address space

Copy Make a copy of a region at another virtual address

Inherit Set the inheritance attribute for a region

Read Read data from another process’ virtual address

space

Write Write data to another process’ virtual address space

Distributed Operating System

Memory Sharing

Process 1 Process 2 Process 3

Mapped

file

Distributed Operating System

Operation of Copy-on-Write

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

RW

RO

7

6

5

4

3

2

1

0

RO

Prototype’s address space

Physical memory

Child’s address space

Distributed Operating System

Operation of Copy-on-Write

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

RW

RO

7

6

5

4

3

2

1

0

RO

Prototype’s address space

Physical memory

Child’s address space 8

Copy of page 7

Distributed Operating System

Advantages of Copy-on-write

1. some pages are read-only, so there

is no need to copy them.

2. other pages may never be

referenced, so they do not have to

be copied.

3. still other pages may be writable, but

the child may deallocate them rather

than using them.

Distributed Operating System

Disadvantages of Copy-on-

write
1. the administration is more

complicated.

2. requires multiple kernel traps, one for

each page that is ultimately written.

3. does not work over a network.

Distributed Operating System

External Memory Managers

 Each memory object that is mapped in a process’
address space must have an external memory
manager that controls it. Different classes of
memory objects are handled by different memory
managers.

 Three ports are needed to do the job.

 The object port, is created by the memory manager
and will later be used by the kernel to inform the
memory manager about page faults and other
events relating to the object.

 The control port, is created by the kernel itself so
that the memory manager can respond to these
events.

 The name port, is used as a kind of name to
identify the object.

Distributed Operating System

Distributed Shared Memory in

Mach
 The idea is to have a single, linear,

virtual address space that is shared
among processes running on
computers that do not have any
physical shared memory. When a
thread references a page that it does
not have, it causes a page fault.
Eventually, the page is located and
shipped to the faulting machine, where
it is installed so that the thread can
continue executing.

 Distributed Operating System

ASSIGNMENT

 Explain process management in

distributed system in detail.

Distributed Operating System

